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Abstract. Form factors parameterizing radiative leptonic decays of heavy mesons
(
B+→ γl+νl

)
against

photon energy are computed in the language of dispersion relations. The states contributing to the absorp-
tive part in the dispersion relation are the multiparticle continuum, estimated by the quark triangle graph,
and resonances with quantum numbers 1− and 1+, which includes B∗ and B∗A and their radial excitations,
which model the higher state contributions. Constraints provided by the asymptotic behavior of the struc-
ture dependent amplitude, Ward identities and gauge invariance are used to provide useful information for
the parameters needed. The couplings gBB∗γ and fBB∗Aγ are predicted as we restrict ourselves to the first
radial excitation; otherwise using these as an input the radiative decay coupling constants for the radial ex-
citations are predicted. The value of the branching ratio for the process B+→ γµ+νµ is found to be in the
range 0.5×10−6. A detailed comparison is given with other approaches.

1 Introduction

In spite of the small branching ratio, the radiativeB-meson
decay (B→ lνγ) is of viable interest, because it contains
important information about the weak and hadronic inter-
actions of the B-meson. Furthermore, with the introduc-
tion of the B-factories LHCb, BaBar, Belle and CLEOb,
the radiative B-meson decay can be studied with enough
statistics. Preliminary data from the CLEO Collaboration
indicate that the limit on the branching ratio B(B→ lνγ)
is

B(B→ eνeγ)< 2.0×10
−4 ,

B(B→ µνµγ)< 5.2×10
−5 ,

at 90% confidence level [1, 2]. With the better statistics ex-
pected from the upcomingB-factories, the observation and
experimental study of this decay could soon become feas-
ible. It is therefore of some interest to have good theoretical
control over the theoretical uncertainties affecting the rele-
vant matrix elements.
The radiative leptonic decay B+→ l+νlγ has received

a great deal of attention in the literature [3–14] as a means
of probing the aspects of the strong and weak interactions
of a heavy quark system. The presence of the additional
photon in the final state can compensate for the helicity
suppression of the decay rate present in the purely leptonic
mode. As a result, the branching ratio for the radiative lep-
tonic mode can be as large as 10−6 for the µ+ case [11],
which would open up the possibility for directly measuring
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the decay constant fB [8]. A study of this decay can of-
fer also useful information about the Cabibbo–Kobayashi–
Maskawa (CKM) matrix element |Vub| [15, 16].
In the radiative B-decay process, there are two contri-

butions to the amplitude:

1. inner bremsstrahlung (IB) and
2. the structure dependent (SD) contribution which de-
pends on the vector and axial vector form factor FV and
FA respectively.

The IB contribution to the decay amplitude is associ-
ated with the tree diagrams shown in Fig. 1a and b, and the
SD contribution is associated with Fig. 1c.
In this paper, we will study the radiative leptonic B-

decays of B+→ l+νlγ. The IB part is still helicity sup-
pressed [3], while the SD one is free from the suppres-
sion [17]. Therefore, the radiative decay rates of B+→
l+νlγ (l = e, µ) could have an enhancement with respect
to the purely leptonic modes of B+ → l+νl due to the
SD contributions in spite of the electromagnetic coupling
constant α. With the possible large branching ratios, the
radiative leptonic B-decays could be measured in future
experiments at the hadronic colliders, such as BTeV and
the CERN large hadron collider (LHC-B) experiments [18].
The paper is organized as follows. In Sect. 2, we present

the decay kinematics and current matrix elements for
B+→ l+νlγ. In Sect. 3, we discuss the various contribu-
tions to the absorptive part of the SD amplitude iHµν ,
needed in the dispersion relation. This includes the mul-
tiparticle continuum and resonances with the quantum
numbers 1− and 1+. The resonances include B∗- and
B∗A-mesons and their radial excitations, which model the
higher states. The continuum is estimated by quark trian-
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Fig. 1. B→ lνlγ radiative leptonic decay diagrams

gle graphs. In Sect. 4, the asymptotic behavior of the SD
amplitude is studied. This provides a usual constraint on
the residues of the resonance contribution, in terms of the
continuum contribution. In Sect. 5, we discuss the Ward
identities which together with gauge invariance relate var-
ious form factors. These identities, which are expected to
hold below the resonance regime, fix the normalization of
the form factors at q2 = 0 in terms of the universal func-
tion g+(0) as well as another constraint on the residues.
Thus, in our approach, a parametrization of the q2 de-
pendence of the form factors is not approximated by a
single pole contribution. But this parametrization is dic-
tated by considerations mentioned above and also predicts
the coupling constants of 1− and 1+ resonances with the
photon if we restrict ourselves to one radial excitation;
otherwise, using these as input, the radiative coupling con-
stants of the radial excitations are predicted. In this and
other respects our approach is different from the others
mentioned previously. Our approach is closest to the one
used in [19] forB→ πlνl. We calculate the decay branching
ratios in Sect. 6. We give our conclusions in Sect. 7.

2 Decay kinematics
and current matrix elements

We consider the decay

B+(p)→ l+(pl)νl(pν)γ(k) , (1)

where l stands for e or µ, and γ is a real photon with
k2 = 0. The decay amplitude for the radiative leptonic de-
cay B+→ l+νlγ can be written in two parts, MIB and
MSD, as follows:

M(B+→ l+νlγ) =MIB+MSD , (2)

in terms of two emission types of the real photon from
B+→ l+νl. They are given by [20–23]

MIB = ie
GF√
2
VubfBmlε

∗
µL
µ , (3)

MSD =−i
GF√
2
VubfBmlε

∗
µH̃

µν lν , (4)

with

Lµ =mlū(pν) (1+γ5)

(
2pµ

2pk
−
2pµl + � kγ

µ

2plk

)
v(pl, sl) ,

(5)

lµ = ū(pν)γ
µ (1+γ5) v(pl, sl) , (6)

H̃µν = iFV(q
2)εµναβkαpβ−FA(q

2) (pkgµν−pµkν) ,
(7)

qµ = (p−k)µ = (pl+pν)
µ
. (8)

Here ε∗µ denotes the polarization vector of the photon with

kµε∗µ (k) = 0. p, pl, pν , and k are the four-momenta of B
+,

l+, ν, and γ, respectively; sl is the polarization vector of
the l+, fB is the B-meson decay constant, and FA, FV
stand for two Lorentz invariant amplitudes (form factors).
The term proportional to Lµ in (5) does not contain un-

known quantities – it is determined by the amplitude of the
non-radiative decayB+→ l+νl. This part of the amplitude
is usually referred as the “inner bremsstrahlung contribu-
tion”, whereas the term proportional to Hµν is called a
“structure dependent contribution”.
The form factor FA (FV) is related to the matrix elem-

ent of the axial (vector) current. The factors fB and FV,A
are defined by

〈0 |ūγµγ5b|B(p)〉=−ifBp
µ , (9)

〈γ (k) |ūγµγ5b|B(p)〉=− [(ε
∗p) kµ− ε∗µ (pk)]FA(q

2) ,
(10)

〈γ (k) |ūγµb|B(p)〉=−iεµναβε∗νpαkβFV(q
2) . (11)

In our phase convention, the form factors FA and FV
are real in the physical region,

m2l � q
2�M2B ,

where q is the momentum transfer. The kinematics of the
decay needs two variables, for which we choose the conven-
tional quantities, and in the rest frame of B,

x=
2pk

M2B
=
2Eγ
MB
, (12)

y =
2ppl
M2B

=
2El
MB
, (13)

and the angle θlγ between the photon and the charged lep-
ton is related to x and y by

x=
1

2

(
2−y+

√
y2−4rl

)(
2−y−

√
y2−4rl

)
2−y+

√
y2−4rl cos θlγ

.

(14)

In terms of these quantities, one can write the momentum
transfer as

q2 =M2B(1−x) (k
2 = 0) . (15)

We write the physical region of x and y as

0≤ x≤ 1− rl , (16)

1−x+
rl

1−x
≤ y ≤ 1+ rl , (17)
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where

rl =
m2l
M2B
=

{
9.329×10−9 (l = e) ,

4.005×10−4 (l = µ) .
(18)

3 Dispersion relations

The structure dependent part,Hµν is given by

iHµν = i

∫
d4xeikx 〈0 |T (jµem(x)J

ν
2 (0))|B(p)〉 .

(19)

We note that [24]

ikµH
µν = ifBpν , (20)

so that for the real photon we can write

Hµν = H̃µν +fB
pµpν

pk
, (21)

where kµH̃
µν = 0 and H̃µν is parametrized as in (7). The

second term in (21) is absorbed in MIB. The absorptive
part is

Abs [iHµν ]

=
1

2

∫
d4xeikx 〈0 |[jµem(x), J

ν
2 (0)]|B(p)〉

=
1

2
(2π)4

[∑
n

〈0 |jµem(0)|n〉 〈n |J
ν
2 (0)|B(p)〉 δ

4(k−pn)

−
∑
n

〈0 |Jν2 (0)|n〉 〈n |j
µ
em(0)|B(p)〉 δ

4(k+pn−p)
]
.

(22)

The δ-function in the first term implies that only values
with p2n = k

2 = 0 are relevant, and since there is no real
particle with zero mass, the first term does not contribute.
Thus contributing to the absorptive part are all possible in-
termediate states that couple to Bγ and annihilated by the
weak vertex 〈0 |Jν2 (0)|n〉. These include the multiparticle
continuum as well as resonances with quantum numbers 1−

and 1+. Thus
(
t= q2

)

FV(t) =
gBB∗γ

M2B∗ − t
fB∗+ . . .

FA(t) =
fB∗
A
Bγ

M2B∗
A
− t
fB∗
A
+ . . . . (23)

The ellipses stand for contributions from higher states with
the same quantum numbers. The couplings gBB∗γ and
fB∗
A
Bγ are defined as〈
B∗−(q, η)γ (k, ε) |B− (P )

〉
= igB∗Bγεαρµσε

∗αqρη∗µpσ ,〈
B∗−A (q, η)γ (k, ε) |B

− (P )
〉
= igB∗

A
Bγ(ε

∗η∗)

− ifB∗
A
Bγ(qε

∗)(kη∗) ,

〈0 |iūγµb|B∗(q, η)〉= fB∗η
µ ,

〈0 |iūγµγ5b|B
∗
A(q, η)〉= fB∗Aη

µ . (24)

We assume that the contributions from the radial excita-
tions ofB∗ andB∗A dominate the higher state contribution.
Thus we write

FV(t) =
RV

1− t/M2B∗
+
∑
i

RVi
1− t/M2B∗

i

+
1

π

∫ M2
S0

ImFContV (s)

s− t− iε
ds+ . . . ,

FA(t) =
RA

1− t/M2B∗
A

+
∑
i

RAi
1− t/M2B∗

Ai

+
1

π

∫ M2
S0

ImFContA (s)

s− t− iε
ds+ . . . , (25)

where the ellipses stand for the contributions from the re-
gion for with much larger mass than the physical mass of
the heavy resonances up to∞. Here,M is a cut off near the
first radial excitation ofMB∗ orMB∗

A
and S0 =MB+mπ,

and

RV =
gBB∗γ

M2B∗
fB∗ ,

RA =
fB∗
A
Bγ

M2B∗
A

fB∗
A
. (26)

RVi andRAi are the corresponding quantities for the radial
excitations with masses MB∗i and MB

∗
Ai
. In the next sec-

tion we develop the constraints on some of the parameters
appearing in the above equations.
If we model the continuum contribution by a quark

triangular graph (similar calculations exist in the litera-
ture [25, 26]), we obtain

FContV = FContA =
fB

MB

{
Qu

Λ̄
−
Qb

MB

(
1+

Λ̄

MB

)}

×
1

1− q2/M2B
, (27)

where

Λ̄=MB−mb , (28)

together with the term

(Qu−Qb)fB
pµpν

kp
= fB

pµpν

kp
,

which appears in (21). As is well known (see for ex-
ample [27, 28]), the pole at q2 =M2B in (27) arises due to
the u

(
b̄
)
quark propagator which forms one leg of the

quark ∆; the other legs are part of the B-meson wave
function.

4 Asymptotic behavior

To get constraints on the residues Ri, it is useful to study
the asymptotic behavior of the form factors FV and FA. It
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has been argued that the behavior of the form factor for
very large values of |t| can be estimated reliably in pertur-
bative QCD processes [pQCD] [19, 29–32]. For t� 0, and
for |t| much larger than the physical mass of the heavy res-
onances, pQCD should yield a very good approximation
to the form factors. First we note that by vector meson
dominance

〈γ (k, ε∗ (k)) |ūγµ (1−γ5) b|B (p)〉

	Qu
fρ

mρ
〈ρ (k, ε∗ (k)) |ūγµ (1−γ5) b|B (p)〉 , (29)

where fρ, having the dimension of mass, is defined as

〈0 |ūγµu| ρ (k, ε (k))〉=
fρ

mρ
εµ . (30)

Then using the methods employed in [31, 32], it is easy to
calculate [only the diagramwhere a gluon is emitted by the
light quark in the (bū) bound state and absorbed by the
heavy quark contributes and is by itself gauge invariant]
F pQCD:

F pQCDV = F pQCDA

=

(
Qu
fρ

mρ

)
32παs(t)

3
(fBfρ)mB

(
1

ε
ln ε

)
1

t2
.

(31)

Here

ε∼O

(
ΛQCD

mB

)
, (32)

It is governed by the tail end of the B-meson wave function
characterized by ε.
Now the asymptotic behavior of (25) is given by

F
(
q2
)
→

−
1

q2

[
RM2+

∑
i

RiM
2
i +
1

π

∫ M2
S0

ImFCont(s)ds

]
.

(33)

Since F pQCD(t) is a reliable approximation to the form fac-
tor for t→−∞, and

(
tF pQCD

)
→ 0 in this limit, it follows

that

RM2+
∑
i

RiM
2
i + c	 0 , (34)

where we have defined

c=
1

π

∫ M2
S0

ImFCont(s)ds . (35)

The convergence relation (34) is a model independent re-
sult and constitutes a very binding constraint for model
building. In other words, the various contributions in (33)
may be individually much larger than the

(
tF pQCD(t)

)
due to αs(t)/t suppression, but there must be large cancel-
lations among the non-perturbative contributions in (33).

This is in the spirit of [19]. We will explore the resonant
contribution (in our model) in order to understand the
effect of (34) on the behavior of form factors in the phys-
ical region. The imposition of this constraint will lead to
a very distinct behavior of the photon momentum distri-
bution, independently of how many resonances we choose
to keep. As the radial excitations of B∗ become heavier,
they are less relevant to the form factors since the spac-
ing between the consecutive radial excitations are expected
to become narrower and narrower [33]. Thus, heavier reso-
nances contribute with a smaller value even in the narrow
width approximation. Furthermore, as finite widths are
considered, the contribution of heavier and thus broader
excitations are additionally suppressed. This shows that
the truncation of the sum over resonances is a reasonable
approximation.
For the reasons stated above we will study a con-

strained dispersive model where only the first two radial
excitations are kept. This is mainly for the reason men-
tioned above. On the other hand, the “minimal” choice
of keeping only one radial excitation will determine R1 in
terms of R. The other necessary ingredient to specify the
model is knowledge of the spectrum of radial excitations.
These resonances [(2S) and (3S) excitations of B∗] have
not yet been observed in the B systems. We will then rely
on potential model calculations for their masses [33]. These
models have been very successful in predicting the masses
of orbitally excited states, and therefore we are confident
that the position of the radial excitations does not intro-
duce a sizeable uncertainty. The resultant spectrum explic-
itly shows that the spacing among the 1S, 2S, 3S states
are, to leading order, independent of the heavy quark mass
and, therefore, constitute the property of the light degrees
of freedom. The spectrum of radial excitations is given
in Table 1, where the subindices 1 and 2 correspond to the
2S and 3S excitation of the B∗, etc. Thus the convergence
condition (34) now reads

RM2+R1M
2
1 +R2M

2
2 + c= 0 . (36)

This condition leaves two free parameters R1 and R2 in
the model. This results in the correct scaling of form fac-
tors with the heavy meson mass. Solving (36) for R2 and
using this in (33), we obtain

F (q2) =
RM2

(
M22 −M

2
)

(M2− q2) (M22 − q
2)
+
R1M

2
1

(
M22 −M

2
1

)
(M21 − q

2) (M22 − q
2)

+
1

M22 − q
2

1

π

∫ M2
S0

M22 − s

s− q2
ImFContV . (37)

Table 1. B-meson masses in GeV [35, 36]

JP M M1/M M2/M

MB 0− 5.28 1.14 1.24

MB∗ 1− 5.33 1.14 1.24

MB∗A 1+ 5.71 1.12 1.22
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If wemodel the continuum contribution by a quark triangle
graph as given in (27), we obtain

F
(
q2
)
=
RM2

(
M22 −M

2
)

(M2− q2) (M22 − q
2)
+
R1M

2
1

(
M22 −M

2
1

)
(M21 − q

2) (M22 − q
2)

+
M22 −M

2

(M22 − q
2) (M2− q2)

c , (38)

where in the heavy quark limitMB =M
∗
B =M and

c= fBMB

[
Qu

Λ̄
+O

(
1

MB

)]
. (39)

5 Ward identity constraints

It is useful to define

〈γ (k, ε) |ūiσµνqνb|B(p)〉=−iε
µναβε∗νkαpβF1(q

2) ,
(40)

〈γ (k, ε) |ūiσµνγ5qνb|B(p)〉= [(qk) ε
∗µ− (ε∗q) kµ]F3(q

2) .
(41)

Now we will make use of the Ward identities and gauge in-
variance principle to relate different form factors.
Usually, gauge invariance is implemented by means of

the Ward identities; another way, essentially the same, is
to consider what happens if the polarization vector of an
external (real) photon is replaced by its four-momentum.
The result is zero, provided that one considers all diagrams
where this particular photon is connected in all possible
ways to a charge carrying line. In this way one understands
the connection between gauge invariance and charge con-
servation. The Ward identities1 used to relate different
form factors appearing in our process are

〈γ (k, ε) |ūiσµνqνb|B(p)〉

=−(mb+mq) 〈γ (k, ε) |ūγ
µb|B(p)〉

+(pµ+kµ) 〈γ (k, ε) |ūb|B(p)〉

=−(mb+mq) 〈γ (k, ε) |ūγ
µb|B(p)〉 , (42)

〈γ (k, ε) |ūiσµνγ5qνb|B(p)〉

= (mb−mq) 〈γ (k, ε) |ūγ
µγ5b|B(p)〉

+(pµ+kµ) 〈γ (k, ε) |ūγ5b|B(p)〉

= (mb−mq) 〈γ (k, ε) |ūγ
µγ5b|B(p)〉 , (43)

where the matrix elements 〈γ(k, ε) |ūb|B(p)〉 and 〈γ(k, ε)
|ūγ5b|B(p)〉 vanish for a real photon due to gauge invariance.
Using theWard identities in (40) and (41), and compar-

ing the coefficients, we obtain [pk = qk, ε∗p= ε∗q]

FV(q
2) =

1

mb+mq
F1(q

2) , (44)

FA(q
2) =

1

mb−mq
F3(q

2) . (45)

1 See [34] for a detailed derivation of these Ward identities.

The results given in (44) and (45) are model independent,
because these are derived by using the Ward identities.
In order to make use of the Ward identities to relate

different form factors, we define

〈γ (k, ε) |iūσαβb|B(p)〉

=−iεαβρσε
∗ρ(k) [(p+k)σg++ q

σg−]

− iqε∗(k)εαβρσ(p+k)
ρqσh

− i [qαεβρστ ε
∗ρ(k)(p+k)σqτ −α↔ β] h1

− i [(p+k)α εβρστ ε
∗ρ(k) (p+k)σ qτ −α↔ β]h2 .

(46)

Since we have a real photon, gauge invariance requires that
if we replace εµ(k) by kµ, the matrix element should vanish.
This requires

g++ g−+2 (qk)h= 0 . (47)

From the Dirac algebra

σµνγ5 =−
i

2
εµναβσαβ , (48)

we can write

〈γ (k, ε) |iūσµνγ5b|B(p)〉

=−
i

2
εµναβ 〈γ(k, ε) |iūσαβb|B(p)〉

= (ε∗µkν − ε∗νkµ)

×
[
g+− g−−

(
M2B+ q

2
)
h1−

(
3M2B− q

2
)
h2
]

+(ε∗µpν − ε∗νpµ)
[
g++ g−+

(
M2B− q

2
)
(h1+h2)

]
−2qε∗ (h−h1−h2) (p

µkν −pνkµ) . (49)

By gauge invariance, namely, replacing εµ by kµ, the ma-
trix element should be zero, and this does not give any
new relation other than (47). Using this relation and 2kq =
M2B− q

2, we get

〈γ (k, ε) |iūσµνγ5b|B(p)〉= (ε
∗µkν− ε∗νkµ)

×
[
2g++

(
M2B− q

2
)
(h−h1−h2)−2q

2h1−2M
2
Bh2
]

− [2kq (ε∗µpν− ε∗νpµ)+2qε∗ (pµkν−pνkµ)]

× (h−h1−h2) . (50)

Contrary to what is stated in the literature, the gauge in-
variance does allow a second tensor structure in addition to
(εµkν − ενkµ).
This gives

〈γ (k, ε) |iq̄σµνqνγ5b|B(p)〉

= 2
(
g+− q

2h−
(
M2B− q

2
)
h2
)
(qkε∗µ (k)− qε∗ (k) kµ) .

(51)

This, in turn, gives [from (41)]

F3(q
2) = 2

[
−g+− q

2h−
(
M2B− q

2
)
h2
]
. (52)

Similarly, from (46), we get the relation〈
γ (k, ε)

∣∣ūiσαβqβb∣∣B(p)〉
=−iεαβρσε

∗ρqβpσ2
[
g+− q

2h1−M
2
Bh2
]
.
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Comparison of this equation with (40) gives

F1
(
q2
)
= 2[g+

(
q2
)
− q2h1

(
q2
)
−M2Bh2

(
q2
)
] . (53)

Thus, finally we obtain

FV
(
q2
)
=

2

mb+mq

{
g+
(
q2
)
− q2h1

(
q2
)
−M2Bh2

(
q2
)}
,

(54)

FA
(
q2
)
=

2

mb−mq
×
{
g+
(
q2
)
− q2h

(
q2
)
−
(
M2B− q

2
)
h2
(
q2
)}
.

(55)

Therefore, the normalization of FV and FA at q
2 = 0 is de-

termined by a universal form factor
(
g+(0)−M2Bh2

)
. Now

the form factor h2 does not get any contribution from a
quark triangle graph nor from the pole, and therefore we
shall put it equal to zero. On the other hand, only g+

(
q2
)

gets a contribution from the quark∆ graph – see [25, 26] for
calculational details –

g+
(
q2
)
= fB

{
Qu

2Λ̄
−
Qb

2MB

(
1−
mq

MB

)}
1

1− q2/M2B
.

(56)

We expect the Ward identities to hold at low q2 below the
resonance regime and as such we use the results obtained
from them at q2 = 0. Thus from (54) and (55), we obtain

(mb+mq)FV(0) = 2g+(0) = (mb−mq)FA(0) . (57)

Further, using (28) above, (57), and neglecting terms of
the order of

(
Λ̄∓mq

)
/MB, we obtain another constraint

using (38) and (39) at q2 = 0:

R

(
1−
M2

M22

)
+R1

(
1−
M21
M22

)
=

(
2g+(0)

M

)
M2

M22
.

(58)

Now if we restrict ourselves to one radial excitation
(M2 =M1) we obtain from (58)

R=
2g+(0)

(M21 /M
2−1)M

(59)

F
(
q2
)
=
2

M

g+(0)

(1− q2/M2) (1− q2/M21 )
. (60)

Restoring the subscripts and using the definitions (26)

gB∗Bγ =
2g+(0)

MB

M2B∗

fB∗
(
M2B∗1

/M2B∗ −1
)

	
2g+(0)

fB

(
M2B∗1

/M2B∗−1
) , (61)

while

fB∗
A
Bγ =

M2B∗
A

MB

2g+(0)

fB∗
A

(
M2B∗

A1

/M2B∗
A
−1

) . (62)

Using g+(0) given in (56) with Qu = 2/3, namely

g+(0) =
2

3

fB

2Λ̄
, (63)

we have the prediction

gB∗Bγ =
2

3Λ̄

1(
M2B∗1

/M2B∗−1
) . (64)

Further

FV(q
2) =

2

MB

g+(0)

(1− q2/M2B∗)
(
1− q2/M2B∗1

) , (65)

FA(q
2) =

2

MB

g+(0)(
1− q2/M2B∗

A

)(
1− q2/M2B∗

A1

) . (66)

This is the final expression for the form factors of our pro-
cessB→ γlνl, if we restrict ourselves to the one radial exci-
tation. We also observe the approximate equality FV(q

2) =
FA(q

2) of the form factors which also occur in some other
models [13, 14]. For numerical work, we shall use the B-
meson masses given in Table 1 and fB = 0.180GeV.
This gives the prediction from (64)

gB∗Bγ =
2.2

Λ̄
= 5.6 GeV−1 , (67)

for Λ̄= 5.28−4.8= 0.4 GeV−1 [see (28) and Table 1]. Also,
we obtain from (63)

g+(0) =
3

20
= 0.15 . (68)

Further from (62)

fB∗
A
Bγ =

fBMB∗
A

fB∗
A

2.6

Λ̄

= 6.5
fBMB∗

A

fB∗
A

GeV−1 . (69)

We now study the effect of the second radial excitation.
We go back to (38) and use the constraint (58) to obtain

F
(
q2
)

=

[
R

(
M22
M2
−1

)(
M21
M2
−1

)
M2

M22

q2

M21

+
2g+(0)

M

(
1− q2

(
1

M22
+
1

M21
−
M2

M21M
2
2

))]
/[(
1− q2/M22

) (
1− q2/M21

) (
1− q2/M2

)]
.

If we parametrize R as

R=
2g+(0)

M

1−
(
1−M21/M

2
2

)
A

(M21 /M
2−1)

,
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where A is a parameter which in principle can be obtained
when gB∗Bγ and fB∗

A
Bγ become known. Then

F
(
q2
)
=
2g+(0)

M

1− q2

M21

(
1+
(
1− M

2

M22

)(
1−

M21
M22

)
A
)

(1− q2/M22 ) (1− q
2/M21 ) (1− q

2/M2)
.

(70)

ForM1 =M2 the above equation, (70), reduces to (60). So
the couplings of B with B∗γ and B∗Aγ become

gB∗Bγ =
2g+(0)M

2
B∗

MBfB∗
(
M2B∗1

/M2B∗−1
)

×
[
1−
(
1−M2B∗/M

2
B∗1

)(
1−M2B∗1

/M2B∗
)
A
]

=
[
1−
(
1−M2B∗/M

2
B∗1

)(
1−M2B∗1

/M2B∗
)
A
]

×5.6GeV−1 , (71)

fB∗
A
Bγ =

fBMB∗
A

fB∗
A

×

[
1−

(
1−M2B∗

A
/M2B∗

A1

)(
1−M2B∗

A1

/M2B∗
A

)
A

]

×6.5GeV−1 , (72)

and the corresponding form factors become

FV(q
2) =

2g+(0)

MB

×

1− q2

M2
B∗1

(
1+

(
1−

M2B∗

M2
B∗2

)(
1−

M2
B∗1

M2
B∗2

)
A

)

(
1− q2/M2B∗2

)(
1− q2/M2B∗1

)
(1− q2/M2B∗)

, (73)

FA(q
2) =

2g+(0)

MB

×

1− q2

M2
B∗
A1

(
1+

(
1−

M2
B∗
A

M2
B∗
A2

)(
1−

M2
B∗
A1

M2
B∗
A2

)
A

)

(
1− q2/M2B∗

A2

)(
1− q2/M2B∗

A1

)(
1− q2/M2B∗

A

) .

(74)

For the numerical values we shall use A= 0 [i.e.,M1 =M2]
and A= 3 and A= 4.8. The second value of A(= 3) corres-
ponds to the estimate of gB∗Bγ from vector meson domi-
nance

gB∗Bγ =
2

3
gB∗Bρ−

fρ−

m2ρ
= 2.76GeV−1 ,

where gB∗Bρ− =
√
2(11)GeV−1 obtained in [37, 38] and

fρ−/mρ= 205MeV. The third value ofA(= 4.8) gives more
or less the width for B∗→ Bγ as obtained from the MI
transition in the non-relativistic quark model (NRQM).
These values give the decay width for the B∗→Bγ transi-
tion as 23 keV, 5.5 keV and 0.8 keV, respectively, while the
MI transition in NRQM predicts it to be 0.9 keV. These
predictions are testable when the above decay width is ex-
perimentally measured.

6 Decay distribution

The Dalitz plot density

ρ(x, y) =
d2Γ

dxdy
=
d2ΓIB
dxdy

+
d2ΓSD
dxdy

+
d2ΓINT
dxdy

= ρIB(x, y)+ρSD(x, y)+ρINT(x, y) (75)

is a Lorentz invariant which contains the form factors FV
and FA in the following form [20, 21, 23]:

ρIB(x, y) =AIBfIB(x, y) ,

ρSD(x, y) =ASDM
2
B

×
[
(FV+FA)

2fSD+(x, y)+ (FV−FA)
2fSD−(x, y)

]
,

ρINT(x, y) =AINTMB

× [(FV+FA)fINT+(x, y)+ (FV−FA)fINT−(x, y)] ,

where

fIB(x, y) =

(
1−y+ rl

x2(x+y−1− rl)

)

×

(
x2+2(1−x) (1− rl)−

2xrl (1− rl)

(x+y−1− rl)

)
,

fSD+(x, y) = (x+y−1− rl) ((x+y−1)(1−x)− rl) ,

fSD−(x, y) = (1−y+ rl) ((1−x)(1−y)+ rl) ,

fINT+(x, y) =

(
1−y+ rl

x(x+y−1− rl)

)
((1−x)(1−x−y)+ rl) ,

fINT−(x, y) =

(
1−y+ rl

x(x+y−1− rl)

)

×
(
x2− (1−x)(1−x−y)− rl

)
,

and

AIB = 4rl

(
fB

MB

)2
ASD ,

ASD =
G2F
2

|Vub|
2
α

32π2
M5B ,

AINT = 4rl

(
fB

MB

)
ASD .

The SD+ term reaches its maximum at x= 2/3, y = 1,
which corresponds to θlγ = π. The SD

− term reaches its
maximum at x = 2/3, y = 1/3, corresponding to θlγ = 0.
Indeed, for a lepton of maximal energy (y = 1), only “right-
handed” photons contribute. In this situation, the photon
and the neutrino must be emitted in the direction oppo-
site to that of the lepton. Angular momentum conservation
forces the photon spin to be opposite to the total lepton
spin, and the photon helicity has the same sign as that of
the lepton. Then the photon and the neutrino are emit-
ted parallel. This configuration corresponds to a neutrino
of maximal energy (Eν = E

max
ν when x+ y = 1). In this

case, only the “left-handed” photon contributes. When x+
y = 1, the IB contribution becomes very large: this cor-
responds to θlγ = 0. Consequently, it is very difficult to
distinguish experimentally between the IB and the SD−
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Fig. 2. The differential decay rate versus
photon energy x is plotted and a compar-
ison is given with various approaches. The
solid line (for A = 0), the dashed-triple-
dotted line (for A = 3.0) and the dotted
line (for A = 4.8) are our calculation, the
dash-dot-dot line is for [11], the dashed line
for [13] and the dash-dotted line for [14].
The thin-solid line is the Sudakov resum-
mation calculation result from [13]

contribution. To summarize, an experiment performed in
the region θlγ 	 π is essentially sensitive to (FV+FA)2.
The form factors calculated in (60) can be expressed in

terms of the dimensionless variable x,

F (x) =
F (0)

x [1− (1−x)/(M1/M)2]
, (76)

where x is defined in (12) and q2 in (15). After restoring
subscripts, the form factors FV

(
q2
)
in (65) and FA

(
q2
)
in

(66) can be written as

FV(x) =
FV(0)

x

[
1− (1−x)/

(
MB∗1/MB

∗

)2] , (77)

FA(x) =
FV(0)

x

[
1− (1−x)/

(
MB∗

A1
/MB∗

A

)2] , (78)

where

FV,A(0) =
2g+(0)

MB
.

We use these in (75) and integrate over x and y in the
limit as mentioned in (16) and (17). The IB contribution
diverges for the minimum value of x; we take an arbitrary
lower limit for x i.e. xmin ≈ rl for which the divergence
problem is cured and the IB part gives some definite value
O(10−20). But as the energy of the photon is increased,
it approaches zero at xmax. Therefore in the total decay
width, this does not contribute much. The SD part is the
most dominant part of the decay width which provides al-
most the whole contribution. This part increases initially
with increasing x, reaches its peak value and then starts
decreasing. The INT part of the decay width is an in-
creasingly vanishing contribution and can be neglected in
comparison to the SD part, because it is suppressed by
O(10−21) and becomes flat (approaches zero) as x (the
photon energy) approaches 1 (its maxima). Therefore, this

does not contribute fairly to the total decay width of the
process.
In Fig. 2, the differential decay width of the process is

plotted against x, and we see that for our calculations, the
peak is shifted to a lower value of x as compared to those
for Eilam et al. [11], Korchemsky et al. [13] and Chelkov
et al. [14]. So, for the processB→ γlνl the branching ratio
obtained is

B(B→ γlνl) = 0.5×10
−6 (l = µ) . (79)

This value is for the form factors given in (77) and (78),
which are obtained by restricting to the first radial excita-
tion only. Now if we consider the effect of the second radial
excitation the expressions for the form factors are given
in (73) and (74). The branching ratios thus obtained are

B(B→ γlνl) = 0.38×10
−6 (l = µ, A= 3.0) ,

B(B→ γlνl) = 0.32×10
−6 (l = µ, A= 4.8) ,

for the two representative cases of A = 3 and A = 4.8
respectively. These are not sensitive to the values of A
in contrast to the decay width of B∗→ Bγ. The CLEO
Collaboration indicates an upper limit on the branching
ratio B(B+→ γνee+) of 2.0×10−4 at the 90% confidence
level [1, 2]. The predicted values are within the upper limit
provided by the CLEO Collaboration but differ from those
predicted in [13, 14], namely 2–5×10−6 and 0.9×10−6, re-
spectively. The Monte Carlo simulation results are given
in [39, 40] where the upper limit on the branching ratio for
this process is predicted to be 5.2×10−5.

7 Conclusions

Preliminary data from the CLEO Collaboration indi-
cate an upper limit on the branching ratio B(B+ →
γνee

+) of 2.0×10−4 at the 90% confidence level [1, 2].
With the better statistics expected from the upcoming
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B-factories, the observation and experimental study of
this decay could soon become feasible. It is therefore
of some interest to have good theoretical control over
the theoretical uncertainties affecting the relevant matrix
elements.
We have studied the B→ γlνl-decay using dispersion

relations, asymptotic behavior of the form factors and
the Ward identities. The dispersion relation involves the
ground state of the B∗ and B∗A resonances and their radial
excitations which model contributions from higher states
and a continuum contribution, which is calculated from
a quark triangle graph. The asymptotic behavior of form
factors and Ward identities fixes the normalization of the
form factors in terms of the universal function g+(0) at
q2 = 0 and puts constraints on the residues. Thus in our
approach, a parameterization of the q2 dependence of the
form factors is not approximated by single pole contribu-
tions. This parameterization is dictated by considerations
mentioned above and also the coupling constants of the
1−(B∗) and 1+(B∗A) resonances with the photon are pre-
dicted if we restrict ourselves to one radial excitation. By
using Λ̄= 0.4 GeV−1 we have calculated g+(0) = 0.15 and
predicted the value of gB∗Bγ = 5.6 GeV

−1 (cf. (67)) and
fB∗
A
Bγ = 6.5fBMB∗

A
/fB∗

A
GeV−1 (cf. (69)). Taking into ac-

count one radial excitation the form factors are summa-
rized in (65) and (66). The branching ratio for the process
is then calculated to be B(B→ γνll) = 0.5×10−6, which
lies within the upper limit predicted by the CLEO Collab-
oration at 90% confidence level [1, 2]. Then we study the
effect of a second radial excitation in terms of a single pa-
rameter A, which in principle is determined once gB∗Bγ
and fB∗

A
Bγ are known (cf. (71) and (72)). The resulting

form factors are given in (73) and (74). By using these form
factors the branching ratio is B(B→ γνll) = 0.38×10−6

and B(B→ γνll) = 0.32×10−6 for the two representative
cases A = 3.0 and A = 4.8 respectively. These branching
ratios are not sensitive to the value of A, in contrast to
the radiative coupling constants which give respectively
the B∗→ Bγ width as 23 keV (A = 0), 5 keV (A = 3.0)
and 0.8 keV (A = 4.8). One can also predict the radiative
widths of the radial excitation in terms of the B∗ and B∗A
radiative widths by using (36), (39) and (58). The differen-
tial decay width versus photon energy is plotted in Fig. 2
to compare our results with the existing calculations in the
light-cone QCD approach [11, 13] and in the instantaneous
Bethe–Salpeter approach [14]. The results for B→ γνll
have been reproduced by using Sudakov resummation [13]
and have also been shown graphically. In our calculations
as well as in [11], the position of the peak of the differ-
ential decay width is shifted towards the lower value of
the photon energy spectrum. This is due to the double
pole in the form factors. The overall effect of the radial
excitations is to soften the q2-behavior of the differential
decay distribution, while in [13] it is due to a Sudakov
resummation.
Our main inputs have been dispersion relations, asymp-

totic behavior and Ward identities, all of which have a
strong theoretical basis and in these aspects it differs from
other approaches. Our approach is closer to the one fol-

lowed in [19] for B→ πlνl. The only external parameters
involved are fB, the resonance masses (which are deter-
mined in potential models) and gB∗Bγ and fB∗

A
Bγ which

are either predicted or on which we have some theoretical
information. The radiative widths of the radial excitations
are predicted in terms of the above coupling constants.
Thus our approach has predictive power and can be tested
by future experiments.
The experiments at the B-factories, BaBar at SLAC

and Belle at KEK (Japan) and the planned hadronic accel-
erators are capable to measure the branching ratio as low
as 10−8 [41, 42].
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